[Proposed] df0.052~df0.098

Author

김보람

Published

February 22, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
fraudTrain.is_fraud.mean()
0.005727773406766326
df_results = try_6(fraudTrain, 0.052,1e7,0.8)
df_results = try_6(fraudTrain, 0.054,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.056,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.058,1e7,0.8, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.960831 0.692698 0.452019 0.547056 0.972166 True Proposed 0.052 86625 amt 0.051890 28875 0.052329 None 10000000.0 0.8
1 GCN None 0.969143 0.761484 0.594483 0.667699 0.982588 True Proposed 0.054 83416 amt 0.054618 27806 0.052147 None 10000000.0 0.8
2 GCN None 0.964047 0.758494 0.540930 0.631498 0.981711 True Proposed 0.056 80437 amt 0.055683 26813 0.056950 None 10000000.0 0.8
3 GCN None 0.956621 0.698658 0.448939 0.546629 0.972666 True Proposed 0.058 77664 amt 0.057916 25888 0.058251 None 10000000.0 0.8
df_results = try_6(fraudTrain, 0.06,1e7,0.8)
df_results = try_6(fraudTrain, 0.062,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.064,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.066, 1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.068,1e7,0.8, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
df_results = try_6(fraudTrain, 0.07,1e7,0.8)
df_results = try_6(fraudTrain, 0.072,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.074,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.076,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.078,1e7,0.8, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
df_results = try_6(fraudTrain, 0.08,1e7,0.8)
df_results = try_6(fraudTrain, 0.082,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.084,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.086,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.088,1e7,0.8, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
df_results = try_6(fraudTrain, 0.09,1e7,0.8)
df_results = try_6(fraudTrain, 0.092,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.094,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.096,1e7,0.8, prev_results=df_results)
df_results = try_6(fraudTrain, 0.098,1e7,0.8, prev_results=df_results)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
df_results = try_6(fraudTrain, 0.00573,1e7,0.8)
ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results